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Abstract. We suggest a new method for the task of extractive text 

summarization using graph-based ranking algorithms. The main idea of this 

paper is to rank Maximal Frequent Sequences (MFS) in order to identify the 

most important information in a text. MFS are considered as nodes of a graph in 

term selection step, and then are ranked in term weighting step using a graph-

based algorithm. We show that the proposed method produces results superior 

to the-state-of-the-art methods; in addition, the best sentences were found with 

this method. We prove that MFS are better than other terms. Moreover, we 

show that the longer is MFS, the better are the results. If the stop-words are 

excluded, we lose the sense of MFS, and the results are worse. Other important 

aspect of this method is that it does not require deep linguistic knowledge, nor 

domain or language specific annotated corpora, which makes it highly portable 

to other domains, genres, and languages.  

1   Introduction 

A summary of a document is a short text that communicates briefly the most 

important information from this document. The text summarization tasks can be 

classified into single-document and multi-document summarization. In single-

document summarization, the summary of only one document is to be built, while in 

multi-document summarization the summary of a whole collection of documents is 

built. In this work, we have experimented only with single-document summaries, as a 

future work we apply this idea to multi-document summarization.  

The text summarization methods can be classified into abstractive and extractive 

methods. An abstractive summary is an arbitrary text that describes the contexts of the 

source document. Abstractive summarization process consists of “understanding” the 

original text and “re-telling” it in fewer words. Namely, an abstractive summarization 

method uses linguistic methods to examine and interpret the text and then to find new 

concepts and expressions to best describe it by generating a new shorter text that 

conveys the most important information from the original document. While this may 

seem the best way to construct a summary (and this is how human beings do it), in 
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real-life setting immaturity of the corresponding linguistic technology for text 

analysis and generation currently renders such methods practically infeasible. 

An extractive summary, in contrast, is a selection of text parts (phrases, sentences, 

paragraphs, etc.) from the original text, usually presented to the user in the same 

order—i.e., a copy of the source text with most text parts omitted. An extractive 

summarization method only decides, for each sentence, whether it should be included 

in the summary. The resulting summary reads rather awkward; however, simplicity of 

the underlying statistical techniques makes extractive summarization an attractive, 

robust, language-independent alternative to more “intelligent” abstractive methods. In 

this paper, we consider extractive summarization.  

A typical extractive summarization method consists in several steps, at each of 

them different options can be chosen. We will assume that the text parts of selection 

are sentences. Therefore, final goal of the extractive summarization process is 

sentence selection. One of the ways to select the appropriate sentences is to assign 

some numerical measure of usefulness of a sentence for the summary and then select 

the best ones; the process of assigning these usefulness weights is called sentence 

weighting. One of the ways to estimate the usefulness of a sentence is to sum up 

usefulness weights of individual terms of which the sentence consists; the process of 

estimating the individual terms is called term weighting. For this, one should decide 

what the terms are: for example, they can be words; deciding what objects will count 

as terms is the task of term selection. Different extractive summarization methods can 

be characterized by how they perform these tasks [1]. 

There are a number of scenarios where automatic construction of such summaries 

is useful. For example, an information retrieval system could present an automatically 

built summary in its list of retrieval results, for the user to decide quickly which 

documents are interesting and worth opening for a closer look—this is what Google 

models to some degree with the snippets shown in its search results. Other examples 

include automatic construction of summaries of news articles or email messages to be 

sent to mobile devices as SMS; summarization of information for government 

officials, executives, researches, etc., and summarization of web pages to be shown on 

the screen of a mobile device, among many others. 

The main proposal consists in detecting Maximal Frequent Sequences, and ranks 

them using a graph-based algorithm. The main contribution of this paper is the 

proposal of using MFS as nodes of a graph in term selection step, and the second 

contribution is using a graph-based algorithm in sentence weighting step. 

The paper is organized as follows. Section 2 summarizes the state-of-the-art text 

summarization and graph-based methods. In Section 3, a graph-based algorithm is 

presented. Section 4 describes Maximal Frequent Sequences. In Section 5, a new 

method is presented.  The experimental setting is described, and some conclusions are 

discussed in Section 6. Section 7 concludes the paper.  

2   Graph-Based Algorithm 

Recently, graph-based algorithms are applied successfully to different Natural 

Language Processing tasks. For example, a linear time graph-based soft clustering 
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algorithm was introduced for Word Sense Induction [2]. Given a graph, vertex pairs 

are assigned to the same cluster if either vertex has maximal affinity to the other. 

Clusters of varying size, shape, and density are found automatically making the 

algorithm suited to tasks such, where the number of classes is unknown and where 

class distributions may be skewed. 

Other example of such applications consists of quantifying the limits and success 

of extractive summarization systems across domains [3]. The topic identification 

stage of single-document automatic text summarization across four different domains: 

newswire, literary, scientific and legal documents. The summary space of each 

domain is explored using an exhaustive search strategy, and finds the probability 

density function (pdf) of the ROUGE score distributions for each domain. Then this 

pdf is used to calculate the percentile rank of extractive summarization systems. The 

results introduce a new way to judge the success of automatic summarization systems 

and bring quantified explanations to questions such as why it was so hard for the 

systems to date to have a statistically significant improvement over the lead baseline 

in the news domain. 

In [4], a hybrid graph-based method was presented annotating relationship maps 

with cross-document Structure Theory [5], and using network metrics [6]. It helped 

for Portuguese multi-document summarization.  

Graph is a data structure that permits to model the meaning and structure of a 

cohesive text of many text-processing applications in a natural way. Particularly 

relevant in this paper is the application of random walks to text processing, as done in 

TextRank system [7]. TextRank has been successfully applied to three natural 

language processing tasks [8]: document summarization [3; 7], word sense 

disambiguation [9], and keyword extraction, and text classification [10] with results 

competitive with those of state-of-the-art methods. The strength of the model lies in 

the global representation of the context and its ability to model how the co-occurrence 

between features might propagate across the context and affect other distant features. 

The description of TextRank is given below.  

 

2.1 Text Representation using Graphs 

Graph representation. A text represented with a graph, interconnects words or other 

parts of a text with meaningful relations. 

Depending on the application, nodes in the graph can be parts of a text of various 

sizes and characteristics. For example, words, ngrams, collocations, entire sentences, 

complete documents, etc. Note that the vertices can belong to different categories in 

the same graph. 

To draw an edge between two vertices of a graph is done in a way of connection, 

which represent, for example, lexical or semantic relations, measures of text 

cohesiveness, contextual overlap, membership of a word in a sentence, etc. 

Algorithm. After determining the type and characteristics of the elements added to 

the graph, the main algorithm of the ranking algorithms consists of the following 

steps [11]: 

– Identify text units that best define the task, and add them as vertices in the graph. 
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– Identify relations that connect such text units, and use these relations to draw 

edges between vertices in the graph. Edges can be directed or undirected, 

weighted or unweighted. 

– Apply a graph-based ranking algorithm to find a ranking over the nodes in the 

graph. Iterate the graph-based ranking algorithm until convergence. Sort vertices 

based on their final score. Use the values attached to each vertex for 

ranking/selection decisions. 

 

2.2 Graph-Ranking Algorithms  

 

The basic idea implemented by a random-walk algorithm is that of “voting” or 

“recommendation.” When one vertex links to another one, it votes for that other 

vertex. The higher the number of votes that are cast for a vertex, the higher the 

importance of the vertex. Moreover, the importance of the vertex casting a vote 

determines how important the vote itself is; this information is also taken into account 

by the ranking algorithm. 

A random-walk algorithm called PageRank [Bri98] has been recently found 

successful in several text-processing applications such as text summarization and 

word sense disambiguation. 

Given a directed graph G = (V, E) with the set of vertices V and the set of edges E, 

where E is a subset of V x V. For a given vertex Va, let In(Va) be the set of vertices 

that point to it (predecessors), and let Out(Va) be the set of vertices that vertex Va 

points to (successors). The PageRank score associated with the vertex Va is defined 

using a recursive function that integrates the scores of its predecessors: 

We describe below two graph-based ranking algorithms: 
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where d is a parameter set between 0 and 1. 

The score of each vertex is recalculated upon each iteration based on the new 

weights that the neighboring vertices have accumulated. The algorithm terminates 

when the convergence point is reached for all the vertices, meaning that the error rate 

for each vertex falls below a pre-defined threshold. 

This vertex-scoring scheme is based on a random-walk model, where a walker 

takes random steps on the graph, with the walk being modelled as a Markov process. 

Under certain conditions (namely, that the graph should be aperiodic and irreducible), 

the model is guaranteed to converge to a stationary distribution of probabilities 

associated with the vertices in the graph. Intuitively, the stationary probability 

associated with a vertex represents the probability of finding the walker at that vertex 

during the random walk, and thus it represents the importance of the vertex within the 

graph. 

PageRank [Bri98] is perhaps one of the most popular ranking algorithms, which was 

designed as a method for Web link analysis. Unlike other ranking algorithms, 
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PageRank integrates the impact of both incoming and outgoing links into one single 

model, and therefore it produces only one set of scores: 
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In matrix notation, the PageRank vector of stationary probabilities is the principal 

eigenvector for the matrix Arow, which is obtained from the adjacency matrix A 

representing the graph, with all rows normalized to sum to 1: P = AT
rowP. 

A ranking process starts by assigning arbitrary values to each node in the graph, 

followed by several iterations until convergence below a given threshold is achieved. 

Convergence is achieved when the error rate for any vertex in the graph falls below a 

given threshold, where the error rate of a vertex Vi is approximated with the 

difference between the scores computed at two successive iterations: Sk+1(Vi) – Sk(Vi) 

(usually after 25-35 iteration steps). After running the algorithm, a score is associated 

with each vertex, which represents the “importance” (rank) of the vertex within the 

graph. Note that for such iterative algorithms, the final value obtained for each vertex 

is not affected by the choice of the initial value; only the number of iterations to 

convergence may be different. 

Undirected Graphs: Although traditionally applied on directed graphs, algorithms 

for node activation or ranking can be also applied to undirected graphs. In such 

graphs, convergence is usually achieved after a larger number of iterations, and the 

final ranking can differ significantly compared to the ranking obtained on directed 

graphs. 

Weighted Graphs: When the graphs are built from natural language texts, they may 

include multiple or partial links between the units (vertices) that are extracted from 

text. It may be therefore useful to indicate and incorporate into the model the 

“strength” of the connection between two vertices Vi and Vj as a weight wij added to 

the corresponding edge that connects the two vertices. Consequently, we introduce 

new formulae for graph-based ranking that take into account edge weights when 

computing the score associated with a vertex in the graph, e.g. 
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3   Maximal Frequent Sequences 

An ngram is a sequence of n words. We say that an ngram occurs in a text if these 

words appear in the text in the same order immediately one after another. For 

example, a 4-gram (ngram of length 4) words appear in the text occurs once in the 
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previous sentence, while appear immediately after another does not (these words do 

not appear on adjusting positions), neither does the text appear in (order is different). 

The definition of ngram depends on what one considers words. For example, one 

can consider capitalized (Mr. Smith) and non-capitalized (a smith) words as the same 

word or as different words; one can consider words with the same morphological stem 

(ask, asked, asking), the same root (derive, derivation), or the same meaning (occur, 

appear) as the same word; one can omit the stop-words (the, in) when counting word 

positions, etc. Say, one can consider that in our example sentence above there occur 

the ngrams we say (capitalization ignored), word appear (plural ignored), appear text 

(in the ignored). This can affect counting the ngrams: if one considers occur and 

appear as equivalent and ignores the stop-words, then in our example sentence the 

bigram appear text occurs twice. 

We call an ngram frequent (more accurately, β-frequent) if it occurs more than β 

times in the text, where β is a predefined threshold. Frequent ngrams—we will also 

call them frequent sequences (FSs)—often bear important semantic meaning: they can 

be multiword expressions (named entities: The United States of America, idioms: kick 

the basket) or otherwise refer to some idea important for the text (the President’s 

speech, to protest against the war). 

Our hypothesis is that FSs can express ideas both important and specific for the 

document. This can be argued in terms of tf-idf (term frequency—inverse document 

frequency, a notion well known in information retrieval [12]). On the one hand, the 

idea expressed by an FS is important for the document if it repeatedly returns to it 

(high term frequency). On the other hand, the corresponding idea should be specific 

for this document, otherwise there would exist in the language a single word or at 

least an abbreviation to express it (high inverse document frequency). It is important 

to note that this argument does not apply to 1-grams, i.e., single words. Therefore, we 

do not consider 1-grams as ngrams in the rest of this paper. 

An ngram can be a part of another, longer ngram. All ngrams contained in an FS 

are also FSs. However, with the arguments given above one can derive that such 

smaller ngrams may not bear any important meaning by their own: e.g., The United 

States of America is a compound named entity, while The United or States of America 

are not. Exceptions like The United States should not affect much our reasoning since 

they tend to be synonymous to the longer expression, and the author of the document 

would choose one or another way to refer to the entity, so they should not appear 

frequently both in the same document. 

FSs that are not parts of any other FS are called Maximal Frequent Sequences 

(MFSs) [13, 14]. For example, in the following text 

… Mona Lisa is the most beautiful picture of Leonardo da Vinci … 

… Eiffel tower is the most beautiful tower … 

… St. Petersburg is the most beautiful city of Russia … 

… The most beautiful church is not located in Europe … 

the only MFS with β = 3 is is the most beautiful, while the only MFS β = 4 is the most 

beautiful (it is not an MFS with β = 3 since it is not maximal with this β). As this 

example shows, the sets of MFSs with different thresholds do not have to, say, 

contain one another. 
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One of our hypotheses was that only MFSs should be considered as bearing 

important meaning, while non-maximal FSs (those that are parts of another FS) 

should not be considered. Our additional motivation was cost vs. benefit 

considerations: there are too many non-maximal FSs while their probability to bear 

important meaning is lower. In any case, MFSs represent all FSs in a compact way: 

all FSs can be obtained from all MFSs by bursting each MFS into a set of all its 

subsequences. García [13] proposed an efficient algorithm to find all MFSs in a text, 

which we also used to efficiently obtain and store all FSs of the document. 

The notions of FSs and MFSs are closely related to that of repeating bigrams; see 

Section 5. This set is conceptually simpler, but for computational implementation, 

MFSs could be more compact. 

4   Proposed Method  

In this section, the proposed method is presented. 

TextRank. We use a graph-based ranking algorithm TextRank to find a ranking over 

the nodes in the graph. Iterate the graph-based ranking algorithm until convergence. 

Sort vertices based on their final score. Use the values attached to each vertex for 

ranking/selection decisions. 

– Vertices. We propose to use MFSs as vertices of a graph (see Section 3). 

– Nodes. Relations that connect MFSs are term weighting relations such as (1) 

frequency of MFSs in a text: f, (2) length of MFS: l, and its presence as 1 or its 

absence as 0 (see Section 3).  

– Configuration of algorithm (TextRank): for this task, the goal is to rank MFSs, 

and therefore a vertex is added to the graph for each MFS in the text. To draw 

nodes between vertices, we are defining a term weighting relation, where “term 

weighting” can be defined in various ways. In the experiments realized in this 

paper, we use a term weighting described in below (in term weighting step). Such 

a relation between two sentences can be seen as a process of recommendation: a 

sentence that addresses certain concepts in a text, gives the reader a 

recommendation to refer to other sentences in the text that address the same or 

similar concepts. The resulting graph is highly connected, with a weight 

associated with each edge, and thus we use again the weighted version of the 

graph algorithms. 

Term selection. We experiment with MFSs and other term selection options derived 

from them. Namely, we considered the following variants of term selection:  

– M: the set of all MFSs, i.e., an ngram m M if it is an MFS with some threshold 

β (recall that MFSs are of 2 words or longer and β  2).1 In the example from 

                                                 
1 In practice, we only considered the MFSs with the thresholds β = 2, 3, and 4, since 

MFSs with higher thresholds were very rare in our collection, except for those 

generated by stop-words. 
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Section 3, M = {is the most beautiful, the most beautiful}. Also, we denote by M2 

the set of all MFSs with β = 2. 

– W: single words (unigrams) from elements of M. Namely, a word w W iff there 

exists an MFS m M such that w  m.  

In our example, W  = {is, the, most, beautiful}. 

The set W are naturally derived from the notion of MFS and at the same time can be 

efficiently calculated. 

Optionally, stop-words were eliminated at the pre-processing stage; in this case our 

MFSs could span more words in the original text, as explained in Section 4. 

Term weighting. Different formulae were considered containing the following 

values: 

– f: frequency of the term in MFSs, i.e., the number of times the term occurs in the 

text within some MFS. In our example, f(is) = 3 since it occurs 3 times in the text 

within the MFS is the most beautiful. If the term itself is an MFS, then this is just 

the frequency of this term in the text (e.g., for M, f is the same as term weight in 

Section 5; for W and N it is not). Under certain realistic conditions (MFSs do not 

intersect in the text, words do not repeat within one MFS) f is the number of 

times the term occurs in the text as part of a repeating bigram. In our example, 

f(is) = 3 since it occurs 3 times in a repeating bigram is the (and one time in a 

non-repeating context church is not). 

– l: the maximum length of a MFS containing the term. In our example, l(is) = 4 

since it is contained in a 4-word MFS is the most beautiful. 

– 1: the same weight for all terms. 

Sentence weighting. The sum of the weights of the terms contained in the sentence 

was used. For sentence selection, the following options were considered: 

– best: sentences with greater weight were selected until the desired size of the 

summary (100 words) is reached. This is the most standard method. 

– kbest+first: k best sentences were selected, and then the first sentences of the text 

were selected until the desired size of the summary was reached. This was 

motivated by a hard-to-beat baseline mentioned in Section 2: only very best sen-

tences according to our weighting scheme could prove to be above this baseline. 

5   Experimental Setting and Results 

Main algorithm. We have conducted several experiments to verify our hypotheses 

formulated in the previous section. In each experiment, we followed the standard 

sequence of steps:  

– TextRank algorithm: we use undirected version of PageRank;  

– Term selection: decide which features are to be used to describe the sentences; 

– Term weighting: decide how the importance of each feature is to be calculated; 
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– Sentence weighting: decide how the importance of the features is to be combined 

into the importance measure of the sentence; 

– Sentence selection: decide which sentences are selected for the summary. 

Test data set. We used the DUC collection provided [15]. In particular, we used the 

data set of 567 news articles of different length and with different topics. Each 

document in the DUC collection is supplied with a set of human-generated summaries 

provided by two different experts. While each expert was asked to generate 

summaries of different length, we used only the 100-word variants. 

Evaluation procedure. We used the ROUGE evaluation toolkit [16], which was 

found to correlate highly with human judgments [17]. It compares the summaries 

generated by the program with the human-generated (gold standard) summaries. For 

comparison, it uses n-gram statistics. Our evaluation was done using n-gram (1, 1) 

setting of ROUGE, which was found to have the highest correlation with human 

judgments, namely, at a confidence level of 95%. 

 

Experiment 1. We conducted this experiment in two phases: first, we tried sentence 

weighting using option best and then option kbest+first. In each experiment, we test 

two term selection options M and W. We excluded stop-words. The results are shown 

in Table 1. 

Table 1. Results for different term selection, term weighting and sentence selection options 

using the proposed method (options: M, W, excluded, best, and kbest+first). 

Term Selection 
Term 

weighting 

Sentence 

Weighting 
Results 

Terms 
Stop-

words 
  Recall Precision 

F-

measure 

W excluded f 
1best+first 47.603 47.518 47.543 

2best+first 47.718 47.621 47.652 

M excluded 

l 
1best+first 47.783 47.699 47.724 

2best+first 48.212 48.088 48.132 

f 
1best+first 47.797 47.712 47.737 

2best+first 48.211 48.093 48.134 

M excluded 

1 

best 

46.668 48.337 47.474 

f  48.009 47.757 47.865 

f2 48.056 47.801 47.910 

l 48.025 47.773 47.881 

l2 48.058 47.812 47.917 

f × l 48.060 47.810 47.916 

f l 48.079 47.831 47.937 

W excluded 

1 

best 

47.682 47.604 47.626 

f 48.659 48.324 48.473 

f 2 48.705 48.235 48.451 
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We started our experiment from modifying term weighting parameters for the term 

selection scheme W with the term weighting option f, which showed good 

performance in the first experiment; and then we tried the term selection options M 

with the term weighting option 1 and the option f. We use kbest+first option for the 

sentence-weighting, see the first part of Table 1. The last line of the first part of the 

table represents the best result from the first part of Table 1. The best results are 

highlighted in boldface. 

In the second part of Table 2, we change the sentence selection option using best 

option. In addition, we tried more term weighting option related to f. First, we tried 

the term selection scheme M, because of the better results obtained from the first part 

of the table, and then we tried the term selection W. 

Term selection W gave a better result than M. Finally, with the best combinations 

obtained from the first two experiments, are highlighted in boldface and underlined.  

 

Experiment 2. In the second part of experiments (see Table 2), we included stop-

words and tried sentence weighting using best and kbest+first options. 

Table 2. Results for different term selection, term weighting and sentence selection options 

using the proposed method (options: M, W, included, best, and kbest+first). 

Term 

Selection 

Term 

weighting 

Sentence 

Weighting 

Results 

Recall Precision F-measure 

W f 
1best+first 47.694 47.612 47.635 

2best+first 47.870 47.761 47.798 

M 

l  
1best+first 47.711 47.623 47.650 

2best+first 48.064 47.923 47.976 

f 
1best+first 47.738 47.649 47.676 

2best+first 48.148 48.016 48.065 

M 

1 

best 

47.484 49.180 48.283 

f 48.803 48.533 48.626 

f2 48.746 48.482 48.572 

l 48.823 48.577 48.658 

l2 48.741 48.518 48.587 

f × l 48.796 48.529 48.620 

f l 48.716 48.497 48.564 

W 

1 

best 

47.529 47.483 47.489 

f 48.821 48.424 48.604 

f2 48.784 48.322 47.489 

 

 

Taking into account the best combination obtained from the first experiment, we 

tried different sentence selection variants including stop-words; see Table 2. From 

Table 1, we knew that term selection scheme M with stop-words removed, gave the 

best results with other parameters fixed (term weighting, sentence weighting, and 

sentence selection); see the first part of Table 1. Therefore, we started from modifying 
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these parameters for the same term selection scheme; see the first part of Table 2. The 

last line of the first part of the table represents the best result from the upper first part 

of Table 1. The best results are highlighted in boldface. 

Then we tried the term selection option W with the term weighting option 1 and the 

options related to f, which showed good performance in the first experiment. The 

results are shown in the first below part of Table 2. Term selection M gave a better 

result than W. The option for term weighting l represents the best result from Table 2. 

The best results are highlighted in boldface and underlined. 

 

Conclusion 1. In this conclusion, we discuss the best term selection option. We 

show in Table 3 the comparison of the best results for the term selection options of M 

and W from Table 2. The best result was obtained with MFSs (option M): it means 

that the proposed method ranks better on MFSs (option M) than words derived from 

MFSs (option W).  

In [1] was shown that W are better than M for single text extractive summarization 

using options W, f, best and W, f, 1best+first. Thus, we conclude that the proposed 

method benefits MFSs (option M). 

Table 3. Comparison for different term selection, term weighting and sentence selection 

options using the proposed method (options: M, W, included, best, and kbest+first). 

Comparison of the best results using the term selection option of M and W from the Table 2. 

 

Term 

Selection 

Term 

Weighting 

Sentence 

Weighting 

Results 

Recall Precision F-measure 

M f 2best+first 48.148 48.016 48.065 

W f 2best+first 47.870 47.761 47.798 

M l best 48.823 48.577 48.658 

W f best 48.821 48.424 48.604 

 

Conclusion 2. In this conclusion, we discuss the best term weighting options from 

Table 2. We take the best results from Table 2, and compose Table 4. The best result 

was obtained with the term weighting option l:  length of the corresponding MFSs 

(option M); it means that the longer MFSs the better for single text summarization.  In 

addition, it means that the proposed method benefits the length of MFS. 

Table 4. Comparison for different term selection, term weighting and sentence selection 

options using the proposed method (options: M, W, included, best, and kbest+first). 

Comparison of the term weighting options l and f. 

 

Term 

Selection 

Term 

Weighting 

Sentence 

Weighting 

Results 

Recall Precision F-measure 

M L best 48.823 48.577 48.658 

W F best 48.821 48.424 48.604 

M F 2best+first 48.148 48.016 48.065 

W F 2best+first 47.870 47.761 47.798 
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Conclusion 3. In this conclusion, we discuss the state-of-the-art methods that use 

different pre-processing options, see Table 5. The results are getting better, if for 

options with the term selection option M, stop-words are included. Contrary to the 

option W, the results are getting better, if stop-words are excluded. For the reason that 

the stop-words do not try any sense, when we eliminate stop-words, the results are 

getting better because the words with meaning are kept. 

 The option M considers MFSs (multiword expressions [20]), so when we exclude 

stop-words from multiword expressions, the sense is lost and the results are worsened. 

Table 5. Comparison of the state-of-the-art methods that use different pre-processing options 

(sentence selection options: best and kfirst+best).  

 

Method 

 

Term Selection 

Term 

weight-

ing 

Results 

 
Terms 

Stop-

words 
 Recall Precision 

F-

measure 

Related work 

[1] 
W  Included f 46.523 48.219 47.344 

Related work 

[1] 
W Excluded f 46.576 48.278 47.399 

Related work 

[1] 
W Excluded f 46.536 48.230 47.355 

Related work 

[1] 
W Excluded f 46.622 48.407 47.486 

Related work 

[1] 
W Excluded f 46.788 48.537 47.634 

Pre-processing 

[21] 
M Excluded 1 46.266 47.979 47.094 

Pre-processing 

[21] 
M 

excluded 

stemming 
1 46.456 48.169 47.285 

Pre-processing 

[21] 
M 

included 

stemming 
1 46.508 48.233 47.343 

Proposed W Excluded f 48.659 48.324 48.473 

Proposed M Included 1 48.823 48.577 48.658 

 

Conclusion 4. One can observe from [1] that any kbest+first sentence selection 

option not outperformed any combination that used the standard sentence selection 

scheme, with bigger k always giving better results—that is, only the slightest 

correction to the baseline deteriorate it. See the comparison of MFS1 and MFS2 [1]. 

For the proposed method, the result with the option kbest+first is better than with the 

option best. 

It is very important result because no one state-of-the-art-method could beat 

baseline configuration described in Section 5: only the very best sentences according 

to our weighting scheme might prove to be above this baseline. Therefore, the 

proposed method could beat this baseline configuration. The proposed method finds 

better sentences than baseline (baseline for the configuration of news article was not 
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15th International Conference on Intelligent Text Processing and Computational Linguistics, CICLing 2014, Part II.  Lecture Notes in Artificial Intelligence, N



possible to improve until now because the structure of news article where the first 

sentences are the most important). Observe in Table 6 that the result with options 

Proposed: M, l, best is better than Proposed: M, l, 1best+first and Proposed: M, l, 

2best+first, contrary to W, f, best not outperformed W, f, 1best+first and W, f, 

2best+first.  

See in Table 1 and 2 details for more comparison. For example, W, f, best also are 

better than W, f, kbest+first. 

Table 6. Comparison of methods to show the difference between best and kbest+first options. 

Comparison  Method Recall Precision 
F- 

measure 

Related work [1] 

W, f, best 44.609 45.953 45.259 

W, f, 1best+first 46.576 48.278 47.399 

W, f, 2best+first 46.158 47.682 46.895 

Proposed 

M, l, best 48.823 48.577 48.658 

M, f, 1best+first 47.711 47.623 47.650 

M, f, 2best+first 48.064 47.923 47.976 

 

Conclusion 5. The comparison to the state-of-the-art methods is given in Table 7. 

We group methods depending on additional information were used for that methods: 

none, order of sentences, pre-processing, clustering. Even though the proposed 

method does not use any additional information, outperforms the other methods. 

The best overall result is for the proposed method that does not use the additional 

information for generating text extractive summaries. It means that this method is 

completely independent (domain independent and text position independent). In 

addition, this method is language independent because does not use any lexical 

information, and can be used for different languages.  

Table 7. Comparison of the results with other state-of-the-art methods. 

Additional info used Method Recall Precision F- measure 

None 

Baseline: random 37.892 39.816 38.817 

TextRank: [7] 45.220 43.487 44.320 

MFS: [19] 44.609 45.953 45.259 

Proposed: M, l, best 48.823 48.577 48.658 

Order of sentences 

Baseline: first 46.407 48.240 47.294 

MFS: [19] 46.576 48.278 47.399 

Proposed: M, f, 2best+first 

(without pre-processing) 
48.148 48.016 48.065 

Pre-processing 

TextRank: [A] 46.582 48.382 47.450 

TextRank: [3] 47.207 48.990 48.068 

Proposed: W, f, best 48.659 48.324 48.473 

Clustering 
MFS (k-best) [19] 47.820 47.340 47.570 

MFS (EM-5) [18] 47.545 48.075 47.742 
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Table 8 shows the results according to their relevance. Considering that Topline is the 

best obtained result and Baseline: random as the worse obtained result. 

Table 8. Comparison of the results with other state-of-the-art methods (F-measure and 

significance). 

Method F- measure Significance 

Baseline: random 38.817 0% 

TextRank: [7] 44.320 26.47% 

MFS: [19] 45.259 31.28% 

Baseline: first 47.294 40.78% 

MFS: [19] 47.399 41.29% 

TextRank: [A] 47.450 41.53% 

MFS (k-best) [19] 47.570 42.11% 

MFS (EM-5) [18] 47.742 42.94% 

Proposed: M, f, 2best+first  

(without pre-processing) 
48.065 44.47% 

TextRank: [3] 48.068 46.20% 

Proposed: M, l, best 48.658 47.35% 

Topline [20] 59.600 100% 

6   Future Work 

As a future work, this method can be applied on different Natural Language 

Processing Tasks such as Word Sense Disambiguation, Text Classification, 

Collocation Extraction, and others. We believe that in the future the proposed method 

can improve various state-of-the-art methods and contribute with even better results. 

In particular, we plan to extend the notion of MFS to that of syntactic n-gram [22, 

23], and extend our method to multi-document summarization, especially in the 

context of social networks [24, 25]. 
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